
Pascal 高精度除法
问题:如何在 Pascal 中进行高精度除法?
回答:
Pascal 中的高精度除法可以通过以下步骤实现:
步骤 1:初始化
- 将被除数和除数表示为数组,每个元素存储一个数字。
- 分别将商、余数和中间结果初始化为数组。
步骤 2:对齐
- 如果除数比被除数长,则在被除数前面添加 0 以对齐长度。
步骤 3:减法循环
- 从最高位开始,使用除数从被除数中减去尽可能多的倍数。
- 将减去的倍数存储在商数组中。
- 将减去后的结果存储在中间结果数组中。
步骤 4:更新被除数
- 将中间结果左移一位,即乘以 10。
- 将下一位除数添加到中间结果中。
步骤 5:继续减法
- 重复步骤 3 和 4,直到被除数为 0 或比除数小。
步骤 6:提取余数
- 剩余的中间结果就是余数。
示例:
除法 (123456789, 123) 的 Pascal 实现:
var
numerator: array[0..10] of integer;
denominator: array[0..2] of integer;
quotient: array[0..10] of integer;
remainder: integer;
begin
// 初始化
numerator := [1, 2, 3, 4, 5, 6, 7, 8, 9];
denominator := [1, 2, 3];
quotient := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
remainder := 0;
// 对齐被除数
for i := 10 downto 8 do
numerator[i + 2] := numerator[i];
numerator[8..10] := [0, 0, 0];
// 减法循环
for i := 10 downto 0 do
begin
div := numerator[i + 2] div denominator[2];
quotient[i] := div;
numerator[i + 2] := numerator[i + 2] - div * denominator[2];
numerator[i + 2] := numerator[i + 2] * 10 + numerator[i + 1];
numerator[i + 1] := numerator[i];
end;
// 提取余数
remainder := numerator[2];
end. 以上就是pascal高精度除法的详细内容,更多请关注知识资源分享宝库其它相关文章!







发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。